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a b s t r a c t

We present here an approach for determining the Hamiltonian of polyatomic molecules that allows one
to successfully solve the problem of potential energy surface (PES) determination via construction and
diagonalization of a Hamiltonian matrix of large dimension. In the suggested approach, the Hamiltonian
is very simple and can be used both for any ‘‘normal” polyatomic molecule and for any isotopic species of
a molecule. Molecules with two to four equivalent X–Y bonds are considered, and for illustration of the
efficiency of the suggested approach, numerical calculations are made for the three-atomic (hydrogen
sulfide) and four-atomic (formaldehyde) molecules.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

One of the most important problems in the field of molecu-
lar physics, which deals with the study of the vibrational–rota-
tional properties of polyatomic molecules, is the problem of the
determination of the intramolecular potential energy surface
(PES) of a molecule in a given electronic state. This problem
is very important because knowledge of the PES is vital in order
to solve the vibration–rotation Schrödinger equation for a
molecule:

Hwa ¼ Eawa; ð1Þ

which then allows one to use the obtained eigenvalues, Ea, and
eigenfunctions, wa, for many problems in physics and chemistry.

Presently there are two main methods to obtain the PES of a
molecule. The first way is the use of direct ab initio calculations
(see, e.g., Refs. [1–8]). Direct methods allow for the production
of a high quality topography of the multidimensional potential
surface of a molecule (see, e.g., [9] and references therein). At
the same time, there are many problems in molecular physics
and attendant applied sciences that require not only qualitative
but highly accurate quantitative knowledge of PES-parameters.
However, as numerical estimations show, even errors of �0.1%
in the values of the main PES-parameters can lead to errors of
the order of 20–30 cm�1, e.g., in the harmonic frequencies. If we

take into account that the accuracies in the determination of
vibrational–rotational line positions (and, as a consequence,
vibrational–rotational energies) in modern experiments are
105 � 106 times greater, it is clear that even the best results of di-
rect PES-calculations should be improved on the basis of the
modern experimental data.

The second group of methods (methods of quantitative PES
determination) may be called ‘‘variational” methods because they
use highly accurate experimental vibrational–rotational data as
initial data in the fitting procedures of the PES-parameters (see,
e.g., [10–25]). In this case, even the best among the modern mod-
ifications of variational methods are not free of large imperfec-
tions that strongly restrict their application to molecules with
more than three or four atoms. The most important problem is
the huge dimensions of the Hamiltonian matrices used during
the diagonalization process (moreover, these dimensions dramat-
ically increase when the number of atoms increases). Extensive
efforts have been made to solve this problem partially (see, e.g.
Refs. [11–13,26]). The second problem is connected with the
proper choice of vibrational coordinates used in the molecular
Hamiltonian. This last point is very important for at least two
reasons:

(a) Firstly, it is known that different sets of internal coordinates
are used to achieve the best representation of the kinetic part of
the Hamiltonian for molecules with different numbers of atoms
and/or different symmetries. In those cases, the investigation at-
tempts to redefine new vibrational coordinates (see, e.g., Refs.
[23–25], [27–29]). In fact, currently there is only one universal
scheme for presentation of the kinetic part of the molecular Ham-
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iltonian for arbitrary polyatomic molecules, using the so-called
normal coordinates, see, e.g., [30,31]. However, as will be discussed
below, the normal coordinates are not suitable for the problem of
determination of the molecular PES. Thus, it would be suitable to
suggest a set of vibrational coordinates that, on the one hand,
would be universal and would allow for the possibility to represent
the kinetic part of the molecular Hamiltonian in a unique and sim-
ple form applicable for any polyatomic molecule and, on the other
hand, would be free of the inconveniences of the normal
coordinates.

(b) The second, and even a more important reason for a proper
choice of internal vibrational coordinates of a molecule, is as follows.
As mentioned above, the most important difficulty for the applica-
tion of traditional schemes for polyatomic molecules is the huge
dimensions of the Hamiltonian matrices, which have to be con-
structed and diagonalized many times. As discussed below, the
eigenvalues of matrices of such dimensions can be obtained with
satisfactory accuracy by using a special perturbation scheme; how-
ever, the success of the perturbation scheme directly depends on the
ratio between the diagonal and nondiagonal elements of the matrix.
This point strongly depends on the complexity of the initial Hamilto-
nian: the less complex the Hamiltonian is, the more efficient the
diagonalization procedure is. For all of these reasons, it would be
suitable to suggest a set of internal vibrational coordinates that
would allow one not only to present the molecular Hamiltonian in
a unique form, but would be as simple as possible for a further con-
struction and diagonalization of the Hamiltonian matrix.

2. Vibrational Hamiltonian of a polyatomic molecule:
application to XY2 molecules with two equivalent bonds

In the present contribution we suggest an approach that is very
simple to use and expands (in comparison with the standard
schemes) the number of molecules to which it can be successfully
applied. The main advantage of the suggested approach is, first of
all, in the introduction of vibrational coordinates that allow us to
represent the kinetic operator as well as the potential function of
a molecule in a simple form, and, on that basis, allow us to use
an efficient perturbation scheme for the diagonalization of Hamil-
tonian matrices of large dimension.

We start with a general remark that the success of the construc-
tion and subsequent diagonalization of a Hamiltonian matrix of
huge dimension directly depends on the basic functions that are
used in the construction of the Hamiltonian matrix. Indeed, if we
assume that the basic functions are the eigenfunctions of the com-
plete Hamiltonian, then the Hamiltonian matrix will be exactly
diagonal independent of its dimension. This implies that the closer
the basic functions are adapted to the Hamiltonian’s eigenfunc-
tions, the more efficient the process of construction and the subse-
quent diagonalization of the Hamiltonian matrix is. In this case, the
better the basic functions are adapted to the eigenfunctions, the
smaller the absolute values of the ratios of the nondiagonal matrix
elements to the diagonal ones are. As a consequence, the preceding
statement implies that perturbation theory can be successfully ap-
plied to the problem of matrix diagonalization in spite of its large
dimension. To summarize, one should expect that the main ques-
tion in the procedure of construction and further diagonalization
of a huge dimension Hamiltonian matrix is, ‘‘how to produce a
set of basic functions that would be as closely as possible adapted
to the Hamiltonian’s eigenfunctions?”

To answer this question we divide the Hamiltonian into two
parts:

H ¼ H0 þ h; ð2Þ

where H0 is a zero-order operator and h is a perturbation. In this
case, the use of different coordinate sets leads to different separa-

tions of the Hamiltonian, H, into two parts. This implies that a spe-
cial choice of the coordinate representation can provide a good set
of basic functions for the problem of construction and diagonaliza-
tion of the Hamiltonian matrix: the smaller the ratio of the pertur-
bation operator, h, to the zero-order Hamiltonian, H0, the closer the
eigenfunctions of the Hamiltonian H0 will be adapted to the eigen-
functions of the whole Hamiltonian, H.

We consider the vibrational Hamiltonian of an arbitrary poly-
atomic molecule.1 Generalization of the results to the rotational–
vibrational problem can be made without difficulty after solving
the vibrational problem. Also, we will limit our consideration to
an isolated, non-degenerate electronic state in the frame of the
Born–Oppenheimer approximation because, in this approximation,
an intramolecular potential function is isotopically invariant. As a
consequence, it allows us to consider jointly all isotopic species
of a molecule. This is important for the problem of the determina-
tion of the molecular PES because it allows for the possibility to use
all of the experimental information about different isotopic species
of a molecule, which means increasing the number of initial exper-
imental data involved in the procedure of the PES determination.
We also will limit our present consideration to molecules that
are free of large amplitude vibrations. Extension of the frame of
those approximations will be additionally discussed.

Because the vibrational Hamiltonian, H, of a molecule consists
of two parts: the ‘‘kinetic” operator, T, and the potential function, V,

H ¼ T þ V ; ð3Þ

it is necessary to mention something concerning the most suitable
representations of both terms. In order to take into account our
wish to jointly consider different isotopic species of a molecule,
the so-called curvilinear vibrational coordinates, Dr (changes of
bond lengths) and Da (changes of angles between bonds), which
are isotopically invariant, are most suitable for the representation
of the potential function, V, in the Hamiltonian Eq. (3). For simplic-
ity of understanding we consider initially a three-atomic molecule,
XY2 of the C2v symmetry (see Fig. 1). In this case, the potential func-
tion of the XY2 (C2v) molecule can be written as:

V ¼ 1
2

frr Dr2
1 þ Dr2

3

� �
þ 1

2
faaDa2 þ frr0Dr1Dr3 þ fraðDr1 þ Dr3ÞDa

þ 1
6

frrr Dr3
1 þ Dr3

3

� �
þ 1

6
faaaDa3 þ 1

2
frrr0 Dr2

1Dr3 þ Dr2
3Dr1

� �
þ 1

2
frra Dr2

1 þ Dr2
3

� �
Daþ fraaðDr1 þ Dr3ÞDa2

þ frr0aDr1Dr3Daþ . . . ð4Þ

Here, f. . . are the parameters of the intramolecular potential func-
tion. It is important that the curvilinear coordinates, Dr and Da, be
easily connected with different other types of vibrational coordi-
nates used for the description of vibrations in polyatomic molecules.

As for the kinetic part, T, of the Hamiltonian in Eq. (3), it was
mentioned above that, at least one type of vibrational coordinates
exists that allows one to represent the kinetic operator in an exact
form. In that representation the kinetic operator is very simple and
valid for any polyatomic molecule under the framework of our
consideration. Normal coordinates, Qk,2 fulfill this condition (see,
e.g., Ref. [31]). In this case, the operator, T, has the following form:

T � T1 þ T2 ¼
X

k

P2
k

2
þ 1

2

X
ab

labGaGb: ð5Þ

1 Some aspects of the approach discussed below and its applications to the three-
to five-atomic molecules have been presented in Refs. [32,33].

2 In accordance with the general vibration–rotation theory, Refs. [30,31], the normal
vibrational coordinates, Qk, are determined as follows: rNa ¼ re

Na þ
P

km�1=2
N lNakQk ;

where re
Na are the equilibrium coordinates (in cm) of the nuclei of a molecule and the

units of the coordinates, Qk, is g1/2� cm.
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Here Pk = �i⁄@/@Qk; lab and Ga ¼
P

klfa
klQ kPl are elements of the

matrix of the inverse moments of inertia and the vibrational angular
momenta, respectively, which depend on the transformation coeffi-
cients, lNbk, known from the vibration–rotation theory, Ref. [31].

The Hamiltonian of a molecule in the form of Eqs. (3)–(5) can be
considered as a suitable basis for the problem of the molecular PES
determination. In this case, of course, both parts, T and V, should be
transformed to expressions depending on the same set of vibrational
coordinates. In this context, three possibilities should be considered:

(a) Curvilinear coordinates, Dr and Da, in the potential function,
V, as in Eq. (4) can be transformed into the coordinates Qk, which the
kinetic part, T, depends on. Indeed, the vibrational Hamiltonian is ex-
panded in the standard form, Ref. [31]. However, such a Hamiltonian
representation is not suitable for the problem of the determination
of the molecular PES because of the appearance of extremely large
nondiagonal elements in the Hamiltonian matrix. In this case, not
only the reduction of large-dimension matrix to submatrices of
smaller dimension, but even its direct diagonalization is impossible
because of the presence of extremely large anharmonic terms in the
Hamiltonian connected with the stretching vibrations. As an exam-
ple of such extremely large nondiagonal elements in the matrix of
the Hamiltonian of the XY2 (C2v) molecule, the elements of the type
< v1v2v3 j k133Q 1Q 2

3 j v1 � 1v2v3 > can be mentioned.
(b) The second possibility is the transformation of the Qk coordi-

nates (within the kinetic part, T) to the curvilinear coordinates, Dr
and Da. Such a Hamiltonian presentation was discussed recently in
our Refs. [34–36] and, independently, in [37,38]. This method can be
applied, in principle, to any ‘‘normal” polyatomic molecule. Moreover,
the use of the obtained expression to construct the Hamiltonian ma-
trix and then to its diagonalization advantageous in comparison with
the procedure discussed in (a). The advantage is the absence of extre-
mely large values of nondiagonal matrix elements caused by the po-
tential function, V, if one uses the Morse coordinates,
yi = 1 � exp(�aDri), instead of the stretching coordinates, Dri. At the
same time the representation in case (b) leads to a very complicated
form of the kinetic operator, T (see above mentioned Refs. [34–38]).
As a consequence, the analysis shows that the problems produced
by the large values of nondiagonal matrix elements, caused by the po-
tential function, V, in case (a), are transferred to analogous problems
that appear from the complicated representation of the kinetic part,
T (especially for molecules with more than three atoms).

We stress here, that both cases discussed above, and a third one
discussed below, are applicable to arbitrary polyatomic molecules.
From this point of view, all three situations satisfy the first goal of
two goals of the present study, which is to formulate the Hamilto-
nian of a molecule in a form that would be applicable to any ‘‘normal”
polyatomic molecule. At the same time, the second goal to derive a
calculation scheme that would provide the possibility to obtain
eigenvalues of the large dimension Hamiltonian matrix is not suc-
cessfully solved by the two first approaches. Therefore, special atten-
tion should be devoted to the third point discussed below:

(c) Let us try to find a new type of vibrational coordinates that
would allow us to keep the advantages of both the kinetic part, T,

(as in case (a)) and the potential function, V, (as in case (b)) but
would be, more or less, free of their disadvantages. Namely, we
would like that this new set of vibrational coordinates keeps a form
of the kinetic operator as simple as possible (moreover, if possible,
they should allow for the inclusion of the whole operator, T1, as in
Eq. (5) into the zero-order operator, H0, in Eq. (2)) and, at the same
time, be free of large values of the nondiagonal matrix elements
caused by the potential function, V.

Before we express such a special set of vibrational coordinates,
we will note that the set of vibrational coordinates, Dr and D a,
used in V in Eq. (4) can be connected to the vibrational coordinates,
Qk, used in T in Eq. (5) by the expressions:

DrN ¼
X

k

CN
k Q k þ

1
2

X
kl

CN
klQ kQl þ

1
6

X
klm

CN
klmQ kQlQ m þ . . . ð6Þ

and

Da ¼
X

k

CkQ k þ
1
2

X
kl

CklQ kQl þ
1
6

X
klm

CklmQ kQlQ m þ . . . ð7Þ

Here, rN (N = 1, 3) is the length of the bond X–YN;a is the interbond
angle; k,l, and m may vary between 1 and 3; Q1 and Q3 belong to the
stretching vibrations and Q2 belongs to the bending vibration. The C-
coefficients in Eqs. (6,7) are known functions of the transformation
coefficients, lNbk, and, for illustration, their analytical expressions
for the XY2 (C2v) molecules are given in Appendix A. The correspond-
ing higher order coefficients, CN

... and C. . ., for the XY2 (C2v) molecule
and any coefficients for other types of molecules can be easily ob-
tained if one takes into account Eqs. (6,7) and Eqs. (45–50). From
the analysis of the symmetry properties and the values of the CN

k -
coefficients it is possible to find that the following relations are ful-
filled for XY2 (C2v) molecules: C1

1 = C3
1 > 0; C3

3 = - C1
3 > 0; the values of

the coefficients C1
1 and C3

3 are very close (they practically coincide) to
each other; and the absolute values of coefficients C1

2 and C3
2 are con-

siderably smaller than the value of C1
1. As for the Ck-coefficients in Eq.

(7), they satisfy jC1j � jC2j, and jC3 j � jC2j3 (as an illustration, see Ta-
ble A1 in Appendix A where numerical values of the CN

k -coefficients are
presented for the H2S molecule).

After this remark, let us introduce a new set of vibrational coor-
dinates, Rk, with the help of the following linear transformation:

Q k ¼
X
l

aklRl; ð8Þ

where a12 = a21 = a23 = a32 = 0, a22 = 1 and

a11 ¼ a13 ¼ a33 ¼ �a31 ¼ C1
1 � C1

3

� ��1
: ð9Þ

From Eqs. (8,9) it is clear that coordinates R1 and R3 are con-
nected with the stretching vibrations and R2 is connected with
the bending vibration.4

It is important to note that the new coordinates, Rk, introduced
in this way keep the main part, T1, of the kinetic operator in Eq. (5)
in the exact and very simple form:

3 It can be shown that the analogous relations between the CN
k and Ck coefficients

are valid for any XY2 fragment in any poliatomic molecule.
4 It should be mentioned that the introduced vibrational coordinates are very close to

the curvilinear coordinates. Dr. and the Radau coordinates (see, for example [40,41]).
However they are considerably different from both the curvilinear and Radau coordinates
as can be clearly seen from Eq. (12) and Appendix B. Indeed, they are not curvilinear
coordinates because they differ from D rN by additionsF(R1,R2,R3). On the other hand, the
introduced coordinates, RN, are not the Radau coordinates because (see, for example
Eq. (6) in [41]) the Radau coordinates are simple sums of DrN coordinates with
coefficients depending on the nuclear masses. At the same time, as is seen from Eq.
(12), the suggested coordinates, RN: (a) depend on different orders of not only the
stretching coordinates, DrN, but on the bending coordinates, as well, (b) even the
simplest coefficients, f N

k , in Eq. (12) depend not only on the nuclear masses but on the
equilibrium interbond angle, ae , and on the ambiguous parameter, sinc, (see
Appendix B).

Fig. 1. Structure of the XY2 (C2v) molecule and definition of the axis used in the
present work.
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T1 ¼ �
�h2

2l1

@2

@R2
1

� �h2

2l3

@2

@R2
3

� �h2

2
@2

@R2
2

: ð10Þ

Here, lN (N = 1, 3) has the meaning of a reduced mass of a frag-
ment, XYN, with:

l1 ¼ l3 ¼ 2 C1
1 � C1

3

� ��2
: ð11Þ

From Eq. (6) (see also footnote 2) it follows that the units of the
CN

k -coefficients is g�1/2. It follows that the units of lN is g. From Eqs.
(8,9) it also follows that the new coordinates, R1 and R3, have units
of cm, and the units of the coordinate R2 is g1/2 � cm.

The second part, T2, of the kinetic operator, T, in Eq. (5) is con-
siderably smaller than the main part, T1, and it can be transformed
without difficulties to the new set of coordinates.

Let us look now at the potential function, V, in Eq. (4). Taking
into account Eqs. (6)–(8), it is possible to express the following
relations between the Dr, Da, and Rk coordinates:

DrN ¼ RN þ FNðR1;R2;R3Þ � RN þ
X

k

f N
k Rk þ

X
kl

f N
klRkRl þ . . . ; ð12Þ

and

Da ¼ C2R2 þ FðR1;R2;R3Þ

� C2R2 þ
X

k

fkRk þ
X
kl

fklRkRl þ . . . ; ð13Þ

where FN(R1,R2,R3) and F(R1,R2,R3) are small corrections of the first
terms and the absolute values of the coefficients f . . . in Eqs.
(12,13) are decreasing quickly with increasing order of the coordi-
nates Rk in the right hand side of those equations. In principle, all
the coefficients, f N

k...l, in Eqs. (12,13) can be obtained in analytical
form on the basis of the equations in Appendix A; however, even
the simplest of them are so cumbersome that it is not suitable to
keep them in analytical form. For this reason we used the numerical
representation of all f N

k...l coefficients and, only for illustration, one
of the most simple coefficients, f 1

3 , is presented in Appendix B.
In practice, after such a transformation of coordinates, the prop-

erties of the potential function, V(R1,R2,R3), of a molecule do not differ
from the properties of the potential function discussed in case (b)
above. This implies that it is very suitable for application in the pro-
cedure of construction of the Hamiltonian matrix and its further
diagonalization. At the same time, the key point of the considered
approach, the exact kinetic operator, T1, of a molecule is extremely
simple and completely included into the zero-order operator, H0.

Moreover, let us introduce one more set of coordinates, and turn
now from the coordinates R1 and R3 to Morse-type coordinates:

yN ¼ 1� expð�aNRNÞ: ð14Þ

By analogy with the usual Morse coordinates

y0N ¼ 1� expð�aDrNÞ; ð15Þ

we introduced in Eq. (14) a parameter, aN, which would coincide
with the parameter a of Eq. (15) if the coordinates RN would coin-
cide with DrN. However, because the coordinates RN slightly differ
from DrN (see Eq. (12)), the values of aN must be slightly different
from the value of a. We now make the reciprocal transformation
of Eq. (14):

RN ¼
1
aN

X
pP1

1
p

yp
N: ð16Þ

Then the potential function V(y1,R2,y3) can be written as

V ¼ V0 þ V1ðy1; y3Þ þ V2ðR2Þ þ V3ðy1;R2; y3Þ; ð17Þ

where V0 is the main zero-order term defined as:

V0 ¼ Dðy2
1 þ y2

3Þ þ
ð2pcx2Þ2

2
R2

2 ð18Þ

(a1 = a3 because of equivalence of the bonds X – Y1 and X – Y2);

V1ðy1; y3Þ ¼
1
6

a111 y3
1 þ y3

3

� �
þ 1

24
a1111 y4

1 þ y4
3

� �
þ a13y1y3 þ

1
2

a113 y2
1y3 þ y1y2

3

� �
þ 1

4
a1133y2

1y2
3 þ

1
6

a1113 y3
1y3 þ y1y3

3

� �
þ . . . ; ð19Þ

V2ðR2Þ ¼
1
6

a222R3
2 þ

1
24

a2222R4
2 þ . . . ; ð20Þ

and

V3ðy1;R2;y3Þ¼a12ðy1þy3ÞR2þ
1
2

a112 y2
1þy2

3

� �
R2þ

1
2

a122ðy1þy3ÞR
2
2

þa123y1y3R2þ
1
6

a1112 y3
1þy3

3

� �
R2þ

1
4

a1122 y2
1þy2

3

� �
R2

2

þ1
6

a1222ðy1þy3ÞR
3
2þ

1
2

a1123 y2
1y3þy1y2

3

� �
R2

þ1
2

a1223y1y3R2
2þ . . . ð21Þ

In Eqs. (18)–(21) all the parameters, D, . . ., a1223, etc., can be eas-
ily expressed as functions of the parameters of the initial expres-
sion in Eq. (4).

As a result of all of the above, one can see from Eqs. (10) and
(18) that the main zero-order part, H0, of the molecular Hamilto-
nian is a simple sum of two Morse-type oscillators for the stretch-
ing type coordinates, R1 and R3, and of a harmonic oscillator for the
bending type coordinate, R2:

H0 ¼
X

N¼1;3

� �h2

2lN

@2

@R2
N

þ Dy2
N

 !
þ � �h2

2
@2

@R2
2

þ ð2pcx2Þ2

2
R2

2

 !
:

ð22Þ

All the other terms both in the potential function, Eqs. (19)–
(21), and in the operator, T2 (Eq. (4)), can be considered as small
corrections to the main zero-order Hamiltonian in Eq. (22). It is
important that in the present approach (contrary to the ap-
proach (b) discussed above) there are no contributions from
the T1 operator, with the exception of the zero-order part in
Eq. (22).

The solution of the Schrödinger equation with the Hamiltonian
in Eq. (22) is well known (see, e.g., Refs. [42–44]). In this case, the
eigenvalues of the harmonic oscillator have the form:

Ev=hc ¼ x2 v þ 1
2

� �
ð23Þ

and the eigenvalues of the Morse-oscillator have the form

En ¼
2D
k

nþ 1
2

� �
� D

k2 ðnþ
1
2
Þ2; ð24Þ

where k ¼
ffiffiffiffiffiffiffi
2lD
p

a�h . The corresponding eigenfunctions are the known
Hermitian polynomials, [42], and the Morse functions, [43,44].
The eigenvalues and eigenfunctions obtained in this way allow us
to construct the matrix of the whole molecular Hamiltonian with-
out any difficulties. Moreover, as comparative analysis shows,
which was made for different types of molecules on the basis of ap-
proach (c) and of the above discussed approaches (a) and (b), in our
case, the ratios between the diagonal and nondiagonal elements of
the whole Hamiltonian matrices have more appropriate values for
the possibility of a successful reduction of these matrices. This im-
plies that the set of basic functions that in our case are the eigen-
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functions of the zero-order Hamiltonoian in Eq. (22), are closely
adapted to the set of eigenfunctions of the whole Hamiltonian, H,
in Eq. (3).

3. Application to axially symmetric XY3 and ZXY3 molecules
with three equivalent bonds

In the preceding Section the XY2(C2v) type molecule was consid-
ered. However, an analogous consideration can be adopted for any
type of polyatomic molecules having a set of equivalent bonds such
as X–Y in the XY2 molecule. The key point in the suggested ap-
proach is the proper choice of the coefficients akl in Eq. (8). In this
case, the coefficients akl should be chosen in such a way, firstly,
not to destroy the simple form of the operator, T1, and, secondly,
to provide the validity of the coordinate transformations of
the type of Eqs. (12,13). Fortunately, as the analysis shows, the
symmetry of the molecules leads to such relations between the
CN

k - and Ck-type coefficients in Eqs. (6,7) that the above required
conditions may be satisfied for many polyatomic molecules (not
only with two, but also with more equivalent bonds).

In this section we discuss the introduction of the corresponding
coordinates for four-atomic YX3(C3v) and five-atomic ZYX3 (C3v)
type molecules that have three equivalent bonds. Because the cor-
responding analytical formulas for the analogous f N

k...l-coefficients
of Eqs. (12,13) are complicated (nevertheless, they always can be
derived on the basis of the relations from Appendix A), we will ex-
plain the introduction of the RN coordinates in the case considered
on the examples of four-atomic PH3 and AsH3 and five-atomic
CH3D and CHD3 molecules (see, Fig. 2).

Analogous to the H2S molecule, discussed in the previous Sec-
tion, the CN

k coefficients can be numerically calculated for any of
those molecules. They are presented in Table A2 of Appendix A.
Here, generalizing the notation, k = 1 denotes the symmetric
stretching mode and k = 2 and 3 denote the doubly degenerated
stretching mode. Additionally, k = 4 denotes the Y–Z vibration in
deuterated methane species. Other k-values indicate bending
modes. As earlier for the H2S molecule, it is possible to see that
the symmetry of all the considered molecules leads to a set of rela-
tions between the values of the CN

k coefficients. In particular:

C1
1 ¼ C2

1 ¼ C3
1 ¼ c; C1

2 ¼ �2C2
2 ¼ �2C3

2 � �
ffiffiffi
2
p

C1
1 ¼ �

ffiffiffi
2
p

c;

C1
3 ¼ 0; C2

3 ¼ �C3
3 � C1

1

ffiffiffi
3
2

r
¼ 	c

ffiffiffi
3
2

r
:

It is possible to show that if one introduces a new set of vibra-
tional coordinates with the help of Eq. (8) then both the above dis-
cussed key conditions will be satisfied if the nonzero coefficients,
akl, are chosen in the following form :

a11 ¼ a12 ¼ a13 ¼ C1
1 	

ffiffiffi
2
p

C2
2 �

ffiffiffi
3
2

r
C3

3

 !�1

¼ a � 1
3c

;

a22 ¼ a23 ¼ �
1
2
a21 ¼

1ffiffiffi
2
p a11; ð25Þ

a31 ¼ 0;a32 ¼ �a33 ¼
ffiffiffi
3
2

r
C1

1;

and, additionally for the CH3D/CHD3 molecules, a44 ¼ 1=C4
4. Coeffi-

cients, akk = 1 (k = 4–6 for XH3 and k = 5–9 for CH3D/CHD3), and
all the other coefficients, akl = 0.

It is easy to show that:
(a) As in the case of the molecule with two equivalent bonds,

the introduced coordinates will transform the main part, T1, of
the ‘‘kinetic” operator from Eq. (5) to the exact and very simple
expression:

T1 ¼ �
X3

i¼1

�h2

2li

@2

@R2
i

�
X6

j¼4

�h2

2
@2

@R2
j

; ð26Þ

where

l1 ¼ l2 ¼ l3 ¼ 3 C1
1 þ

ffiffiffi
2
p

C2
2 �

ffiffiffi
3
2

r
C3

3

 !�2

: ð27Þ

(b) The relationship between the coordinates, Dr/Da, on the one
hand, and the introduced coordinates, Ri, on the other hand, will
have exactly the same form as Eqs. (12,13). Of course, the coeffi-
cients fk. . .l in this case will be different, but all of the deductions
of Section 2 concerning their relative values will be valid in the
considered case as well. It means that everything said in the pre-
ceding Section will be valid in the considered cases.

Eq. (26) is valid for the four-atomic XY3 molecule. From the
above discussion, it is not difficult to see that for the five-atomic
CH3D/CHD3 (or, in the general case, ZXY3 axially symmetric) mol-
ecule the ‘‘kinetic” operator can be transformed to the exact
expression:

T1 ¼ �
�h2

2lY

X3

i¼1

@2

@R2
i

� �h2

2lZ

@2

@R2
4

�
X9

j¼5

�h2

2
@2

@R2
j

; ð28Þ

where lY has the same form as li in Eq. (27) and lZ ¼ ðC
4
4Þ
�2.

Exactly the same scheme of introduction of the Ri coordinates
can be realized for the asymmetric isotopic species of the consid-
ered four- and five-atomic molecules. We will not discuss the cor-
responding mathematical manipulations and will mention only
that the a-coefficients in the general equation (Eq. (8)) will have
exactly the same form as values in Eq. (9) both for the pair of
equivalent bonds in the XYY02=XY2 Y0 molecules and for the two
pairs of equivalent bonds in the CH2D2 type molecule. The corre-
sponding ‘‘kinetic” operators, T1, effective masses, li, analogous
to Eqs. (12,13), and the potential functions (analogous to Eqs.
(17)–(21)) can also be derived very easily.

4. Application to the five-atomic XY4 molecule with four
equivalent bonds

We will consider molecules with four equivalent bonds using
the CH4 molecule (Fig. 3) as an illustration. In this case analytical
formulas for the CN

k coefficients have a very complicated form
and, as in the preceding Sections, we use their numerical values
for analysis. In any case, the presence of symmetry and of four
equivalent bonds leads to the following relations between the CN

k

coefficients (for the CH4 molecule the values of the corresponding
coefficients are given in column 6 of Table A2):Fig. 2. Structure of the XY3 (C3v) and ZXY3 (C3v) molecules.
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C1
1 ¼ C2

1 ¼ C3
1 ¼ C4

1;

C1
2 ¼ �C1

3 ¼ �C1
4 ¼ �C2

2 ¼ C2
3 ¼ �C2

4

¼ �C3
2 ¼ �C3

3 ¼ C3
4 ¼ C4

2 ¼ C4
3 ¼ C4

4;

C1
1 � C1

4: ð29Þ

In this case, the corresponding a-coefficients in the general for-
mula, Eq. (8), should be taken as:

a11 ¼ a12 ¼ a13 ¼ a14 ¼ a21 ¼ �a22 ¼ �a23 ¼ a24

¼ �a31 ¼ a32 ¼ �a33 ¼ a34 ¼ �a41 ¼ �a42 ¼ a43 ¼ a44

¼ ðC1
1 þ 3C1

4Þ
�1;

akk ¼ 1; k ¼ 5;6;7;8;9: ð30Þ

All other akl elements should be taken to be equal to zero.
Again, it is easy to show that the ‘‘kinetic” operator, T1, in this

case has an exact and simple form:

T1 ¼ �
�h2

2l
X4

i¼1

@2

@R2
i

�
X9

j¼5

�h2

2
@2

@R2
j

; ð31Þ

where

l ¼ 4 C1
1 þ 3C1

4

� ��2
ð32Þ

5. Reduction of a Hamiltonian matrix of large dimension

The coordinate representation suggested in the preceding Sec-
tions allows one to represent the molecular Hamiltonian in a form
that provides a possibility to make a diagonalization of the Hamil-
tonian matrix, in principle, of arbitrary dimension on the basis of
perturbation theory. In this Section we present (without details
of the procedure of their determination) formulas that can be ob-
tained on the basis of the well known Van Vleck transformation
(see, for example, Ref. [45]). We discuss the general algorithm of
the procedure of diagonalization of large-dimensional Hamiltonian
matrices and the expected accuracy of the obtained results. Of
course, the scheme that is based on the perturbation theory gives
only an approximation to the ‘‘exact” molecular PES. However, un-
der conditions when the direct diagonalization does not allow us to
obtain any result at all, even approximate results obtained in the
framework of the perturbation calculations are suitable.5

Let us assume that the nondiagonal matrix elements of the
Hamiltonian matrix are considerably smaller than the diagonal ele-
ments (as it can be seen from the above discussion, the coordinate
representation suggested in Sections 2–4 can be considered as a
reasonable basis for this assumption). Without loss of generality,
we can assume that the diagonal matrix elements, hii, are the val-
ues of order j0 and the nondiagonal elements, hij(i – j), are of order
j1 (j is a small parameter whose value, as it will be seen from the
discussion below, can be changed depending on the peculiarities of
the problem). In this case it is possible to show that using only one
Van Vleck transformation:

bij ¼ Gþ1 HG1
� �

ij; ð33Þ

with the unitary operator, G1 = exp(ig1), allows one to transform
the large-dimensional initial matrix, H, to a new matrix, B, with
the elements bij as in Eq. (33), which satisfies a set of important
properties:

(1) Matrix B can be divided into a set of sub-blocks. Out-of-
block elements of the transformed matrix, B, are of order j2.

(2) Diagonal elements of the sub-blocks can be calculated (tak-
ing into account the third-order correction) with the general
formula:

bii ¼ hii þ
X
kRXi

hikhki

hii � hkk
þ

X
k; l R Xi

ðk–lÞ

hikhklhli

ðhii � hkkÞðhii � hllÞ

�
X

m 2 Xiðm–iÞ
k R Xi

himhmkhki

ðhmm � hkkÞðhii � hkkÞ
. . . . . .þ Oðj4Þ: ð34Þ

Here, X(i) is the space of all states interacting with the state ji > .
Analogously, the nondiagonal matrix elements, bij, of the sub-
blocks are obtained by the formulas (the states ji> and jj> belong
to the same space, X(i)):

bij¼hijþ
1
2

X
kRXi

hikhkj
1

hii�hkk
þ 1

hjj�hkk

� �

þ
X

k; l RXi

ðk–lÞ

hikhklhlj

ðhii�hkkÞðhjj�hllÞ

�1
2

X
k RXi;

m2Xiðm–iÞ

himhmkhkj

ðhjj�hkkÞðhmm�hkkÞ

�1
2

X
k RXi;

m2Xiðm–jÞ

hjmhmkhki

ðhii�hkkÞðhmm�hkkÞ
. . . . . .þOðj4Þ: ð35Þ

Both Eqs. (34) and (35) are valid with an accuracy of order j3.
(3) It is possible to show that using the second Van Vleck

transformation:

~bkl ¼ ðexpð�ig2ÞBexpðig2ÞÞkl; ð36Þ

where g2 � j2, will give corrections of order j4 only, both to the
diagonal and nondiagonal elements of the sub-blocks. It provides
the possibility to claim (if one neglects the out-of-block elements
of the B matrix) that the differences between the eigenvalues of
the sub-matrices of the B matrix, on the one hand, and the eigen-
values of the initial Hamiltonian, on the other hand, can be esti-
mated as being of order j4.

Fig. 3. Structure of the XY4 (Td) molecule.

5 It is necessary to mention that a very similar perturbation scheme was used
earlier in vibrational–rotational calculations in the works by S. Brodersen with co-
authors (see, e.g., Refs. [46,47] and references therein).

O.N. Ulenikov et al. / Journal of Molecular Spectroscopy 255 (2009) 88–100 93



Author's personal copy

(4) It can be shown that the quantitative criteria for the possi-
bility to reduce the initial Hamiltonian matrix to a set of sub-matri-
ces are determined by the following conditions:

(a) If the nondiagonal element, hij, of the initial Hamiltonian
matrix does not satisfy the condition:

hij

hii � hjj
< j; ð37Þ

then the states, ji> and jj > , should be combined into one block (see
Fig. 4).

(b) If the out-of-block elements of the transformed matrix, B,
does not satisfy the condition:

bik ¼
X

j2XðiÞ

hijhjk

hkk � hjj
þ

X
l R Xi;

l R Xk

hilhlk

2
1

hkk � hll
þ 1

hii � hll

� �
< j2

ð38Þ

(i 2X(i);k R X(i)), then the two corresponding sub-blocks should be
combined into one extra-block (see Fig. 5). In this case, all matrix
elements of this new block should be calculated in accordance with
Eqs. (34) and (35).

In summary, the following scheme of analysis may be proposed
for the problem of molecular PES determination:

(1) On the basis of the model suggested in Sections 2–4, the ele-
ments, hmn, of the Hamiltonian matrix should be calculated.

(2) The validity of the conditions in Eqs. (37) and (38) should be
checked and, on that basis, submatrices of the transformed
matrix, B, should be identified.

(3) Matrix elements of the diagonal sub-matrices should be
determined in accordance with Eq. (34) (diagonal elements
bii) and Eq. (35) (nondiagonal elements bij), and then subma-
trices should be directly diagonalized.

As was mentioned above, the accuracy of the discussed calcula-
tion scheme is estimated as j4. If one is not satisfied with this accu-

racy of calculations, the accuracy can be increased in two ways. On
the one hand, the second transformation in Eq. (36) can be made.
Obviously, this transformation will simultaneously decrease abso-
lute values of the out-of-block matrix elements, and will provide ele-
ments of the diagonal submatrices by corresponding corrections.

On the other hand, the second way to increase the accuracy of
the calculations can be achieved even without the second unitary
transformation. To provide this, one can simply decrease the value
of the small parameter, j, in Eqs. (37) and (38). Indeed, let us
assume that the diagonal elements, hii, in the initial Hamiltonian
matrix have values in the range of 5000–10,000 cm�1 and j ¼ 1

7.
In this case, the errors in the eigenvalues, Ei, obtained from the dis-
cussed procedure are expected to be (5000 � 10,000) � j4

= (5000 � 10,000) � 4 � 10�4 cm�1. However, if we assume that
j ¼ 1

10, then the errors in the eigenvalues, Ei, are expected to be four
times smaller, (5000 � 10,000) � 1 � 10�4 cm�1. Of course, in the
second case, the conditions for fulfillment of Eqs. (37) and (38)
are stricter than in the first case. As a consequence, the initial
Hamiltonian matrix is divided into submatrices of larger dimen-
sion than in the first case. Finally, the choice in favor of the first
or the second way depends on the problem considered.

To check the validity of the above discussed scheme, we per-
formed some diagonalization tests of the Hamiltonian matrix of
dimension approximately 10,000 � 10,000. The Hamiltonian ma-
trix of the H2S molecule was constructed in accordance with the
model of Section 2. Different combinations of fi. . .j parameters were
used for such testing calculations. In all of the considered cases, the
obtained matrix was directly diagonalized and, on the other hand,
the calculation procedure discussed in this section was used for its
diagonalization. In the result of all testing calculations, the differ-
ences in eigenvalues obtained by the two different methods were
not larger than 0.3–0.6 cm�1. It can be considered as a more than
satisfactory correspondence if one recalls that the discussion of
the present paper is in the frame of the Born–Oppenheimer
approximation.

Fig. 4. Scheme of the Hamiltonian matrix reduction after check-up of the condition in Eq. (37).
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6. Three-atomic (hydrogen sulfide) and four-atomic
(formaldehyde) molecules as an illustration

To check the efficiency of the proposed approach in comparison
with traditional methods of PES determination, we made some
model calculations for the three-atomic H2S and four-atomic
H2CO molecules.

(a) Three � atomic molecule. For such a test, 141 band centers
with vmax:

bend: ¼ 4 and nmax:
stretch: ¼ 7 from Ref. [29] were used in our mod-

el as initial data. The use of only six parameters in our model
(namely D, a, a13, x2, a122, and a1122) allowed us to reproduce all
141 band centers of the H2S molecule with a root mean square
deviation, rms = 0.69 cm�1. This result is more than satisfactory if
one takes into account that our model is constructed in the frame
of the Born–Oppenheimer approximation, and deviations from this
approximation for molecules like hydrogen sulfide may reach the
order of 0.5–2.0 cm�1. An analogous fit of the same number, 141,
of D2S band centers from the same Ref. [29] with the same six
parameters gave even better results with a rms = 0.58 cm�1. Test
calculations of this kind show that the proposed model allows
one to produce results that are, at least, not worse than ones ob-
tained with considerably more complicated methods.

As one more illustration of the possibilities and efficiency of the
discussed approach we consider below the problem of the determi-
nation of the real intramolecular potential function for the hydrogen
sulfide molecule. In this case, because the proposed approach allows
for the use of experimental information about all isotopic species of a
molecule, we jointly considered three main isotopic species of
hydrogen sulfide, H2S, D2S, and HDS. The obtained results are com-
pared with analogous previous results from Refs. [29] and [48–51].
In this case we would like to remark that in the testing calculations
presented below we did not have the goal to produce PES parameters
better than the very accurate results obtained for hydrogen sulfide,
for example, in Refs. [49] and/or [51]. In those two papers, special ef-
forts (adiabatic and nonadiabatic corrections, inclusion of repulsion

terms, large number of fitted parameters, etc.) have been made with
the goal to achieve a highly accurate reproduction of known experi-
mental data. It should be kept in mind that in those cases three-
atomic molecules were considered for which the methods of PES-
determination known in literature are very efficient. In our case
we suggest an approximate method, whose accuracy is comparable
with the values of corrections caused by adiabatic corrections. At the
same time, as it follows from the above discussion, there are no
obstacles for applications of the suggested method to molecules
with more than three to four atoms (in particular, in Refs. [32,33]
and [52] the suggested method is applied to the determination of
the methane PES on the basis of highly accurate experimental data
about more than 200 band centers of the CH2D2, CH3D, and CHD3

methane isotopic species).
One more minor remark should be made in the context of the

discussed PES calculation for hydrogen sulfide. One of its isotopic
species (namely, HDS) has no equivalent bonds. For this reason,
in accordance with the main strategy of the discussed approach,
the akm coefficients in Eq. (8) should be taken for the HDS molecule
as akm = 0 for k – m, a22 = 1, a11 ¼ 1=C1

1, and a33 ¼ 1=C3
3.

From Refs. [53–67], we used 88 band centers of the three isoto-
pic species as initial experimental data. Obtained from the fit is a
set of 16 parameters of the potential function from Eq. (4) pre-
sented in Table 1 together with their 1r statistical confidence
intervals. Two remarks should be made here. Firstly, in accordance
with the general discussion, we separately varied the a-parameters
both for different species, and for different bonds of the HDS spe-
cies. Secondly, we used one parameter, y11122, from Eq. (21) addi-
tionally to the force parameters, f. . ., of the potential function in
the form of Eq. (4). This parameter was introduced in order to ob-
tain a better description of the highly excited states of the H2S spe-
cies. Of course, the y11122 parameter can be expressed as a function
of the f. . .-parameters of the potential function in Eq. (4). However,
the number of f. . .-parameters on which the y11122 depends on is so
large that we preferred to keep y11122 in its original form.

Fig. 5. Scheme of the Hamiltonian matrix reduction after check-up of the condition in Eq. (38).
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It should be mentioned that the values of the potential param-
eters obtained from the fit correlate more than satisfactorily with
the values of the corresponding sets of parameters known in the
literature (see, for example, the above mentioned [29], [48–51]).

Columns 2 of Tables 2–4 present values of the experimental
band centers of the three isotopic species of hydrogen sulfide. Ref-
erences for Table 2 are given in column 3. The quality of the fit is
illustrated by column 4 in Table 2 and by columns 3 in Tables 3
and 4. These columns present differences, D = mexp. � mcalc., between
experimental energy levels and ones calculated with the parame-
ters given in column 2 of Table 1. Because the present fit was made
in the frame of the Born–Oppenheimer approximation, these val-
ues of D express a more than satisfactory result of our approach.
For illustration, columns 5–7 of Table 2, columns 4–5 of Table 3,
and column 4 of Table 4 present analogous results from [29] and
[48–50]. One can see reasonable, even good, correlations between
all sets of calculated values.6

The last remark that we would like to make here is that one of
the most important consequences of the approach suggested in
Section 2 is the possibility to present a large-dimensional Hamil-
tonian matrix in a quasi-diagonal form. In its turn, this allows us
to divide a large matrix into a set of matrices of considerably
smaller dimension. As a consequence, it provides the possibility
to strongly reduce the calculation time. In particular, the above
discussed procedure applied to the three hydrogen sulfide isoto-
pic species took us about 30 min of calculations with an ordinary
lap-top, which is a significant decrease in the calculation time
compared to analogous calculations by traditional methods even
using supercomputers.

(b) Four � atomic molecule. As an illustration of the application
of the above discussed approach to a more complicated molecular

system we discuss here the four-atomic formaldehyde molecule.
Because we speak only about the illustration of the efficiency of
the derived approach, we will use the potential function of the
H2CO molecule in the form of Eqs. (17)–(21) (not in the form of
Eq. (4)), which are suitable for consideration of separate isotopic
species of a molecule. The problem of determination of the intra-
molecular potential function of the formaldehyde molecule on
the basis of experimental information about all of its isotopic spe-
cies will be considered in detail in a forthcoming paper [68].7

Because the H2CO molecule has six vibrational coordinates: (1)
two equivalent H–C stretching vibrations; (2) one C@O stretching
vibration; (3) two equivalent H–C–O in-plane bending vibrations;
and (4) one out-of-plane (H–C–H)–O variable, the discussion of
Section 2 is totally valid for the considered situation. In this case,
the ‘‘kinetic” part of the vibrational Hamiltonian will have the
form:

Table 1
Potential energy parameters for hydrogen sulfidea.

Parameter Value
1 2

aH/Å�1b 1.71729 (896)
aD/ Å�1b 1.75556 (904)
aH

HDS=Å
�1b 1.9554 (648)

aD
HDS=Å

�1b 1.42589 (805)
frr/aJ Å�2 4.2860587(924)
frr0/aJ Å�2 �0.233600 (740)
fra/aJ Å�1 0.10217 (661)
faa/aJ 0.758639 (636)
frrr/aJ Å�3 �20.6047 (839)
frr0a=aJÅ

�2 �1.0400 (457)
fraa/aJ Å�1 �0.61012 (912)
faaa/aJ 0.21301 (741)
frrrr/aJ Å�4 71.091 (849)
frrr0r0 =aJÅ

�4
0.38381 (759)

frraa/aJ Å�2 0.44713 (672)
y11122/cm�1c 0.03414(747)

re/Åd 1.3356
ae/ deg.d 92.12

a Uncertainties in parentheses are one standard errors.
b Parameters a for the H2S and D2S species are denoted as aH and aD, respectively.

Analogous parameters a associated with S–H and S–D bonds in the HDS molecule
are denoted as aH

HDS and aD
HDS , respectively.

c The y11122 is the extra coefficient from Eq. (21) which was used for the H2S
molecule only. In this case it is assumed that numerical calculations were made
with dimensionless coordinate R2.

d Constrained to the value from Ref. [29].

Table 2
Band centers of the H2S molecule (in cm�1).

Band Value Ref. D, our D, [29] D, [48] D, [49] D, [50]

1 2 3 4 5 6 7 8

m2 1182.5769 [53] 0.41 �0.6 0.14 �0.33 �8.82
2m2 2353.9655 [54] 0.02 �1.0 0.14 �0.19 �21.43
m1 2614.4074 [54] 0.61 0.2 �0.25 0.02 �5.64
m3 2628.4552 [54] �0.59 0.4 �0.10 �0.34 �2.19
3m2 3513.7909 [55] �0.50 �1.6 0.62 0.05 �38.51
m1 + m2 3779.1667 [55] 1.44 1.3 0.12 0.13 �15.78
m2 + m3 3789.2693 [55] �0.50 0.0 �0.39 0.08 �10.88
4m2 4661.6770 [56] �0.36 �2.8 2.20 0.11 �60.32
m1 + 2m2 4932.6992 [56] 1.21 3.0 �0.21 0.35 �29.95
2m2 + m3 4939.1044 [56] �0.68 0.2 �0.72 0.44 �23.35
2m1 5144.9862 [56] 0.61 0.6 �0.53 �0.31 �7.77
m1 + m3 5147.2205 [56] �1.47 0.5 0.10 �0.05 �6.78
2m3 5243.1014 [56] �0.19 �0.3 �0.28 �0.43 �7.34
5m2 5797.2372 [57] 1.09 5.41 0.61 �87.26
m1 + 3m2 6074.5824 [57] 0.15 5.0 0.08 �0.11 �48.57
3m2 + m3 6077.5942 [57] �0.46 0.7 �0.46 �0.34 �39.96
2m1 + m2 6288.1456 [57] 1.29 1.3 �0.22 0.25 �18.58
m1 + m2 + m3 6289.1741 [57] �0.96 0.9 0.18 0.47 �17.93
m2 + 2m3 6385.1381 [57] 0.32 1.0 �0.75 �17.53
2m1 + 2m2 7419.9184 [58] 0.90 3.3 �0.11 �32.98
m1 + 2m2 + m3 7420.0930 [58] �1.07 2.1 0.17 0.46 �32.91
3m1 7576.3833 [58] �0.09 1.0 �0.07 �0.04 �8.96
2m1 + m3 7576.5466 [58] �0.59 1.0 0.13 0.06 �8.86
m1 + 2m3 7752.2638 [58] �1.71 �1.3 �0.14 �0.39 �14.29
3m3 7779.3208 [58] 0.92 �0.7 �0.28 �0.48 �7.97
3m1 + m2 8697.142 [59] �0.24 0.5 0.56 0.39 �22.56
2m1 + m2 + m3 8697.155 [59] �0.56 0.5 0.68 0.44 �22.55
2m1 + 4m2 9647.167 [60] �0.27 7.3 2.10 �74.66
m1 + 4m2 + m3 9647.167 [60] �0.41 7.3 2.10 �76.00
2m1 + 2m2 + m3 9806.667 [60] �0.78 2.3 1.31 �39.93
3m1 + 2m2 9806.773 [60] �0.70 2.4 1.27 �39.83
3m1 + m3 9911.023 [60] 0.27 1.3 0.27 0.32 �9.80
4m1 9911.023 [60] 0.39 1.3 0.25 0.33 �9.50
4m1 + m2 11008.696 [61] �0.56 1.9 �0.18 �27.02
3m1 + m2 + m3 11008.696 [61] 0.66 1.9 �0.17 �27.02
m1 + 3m2 + 2m3 11097.161 [61] 0.51 �0.4 �65.66
5m1 12149.458 [62] 1.51 �0.3 �9.45
4m1 + m3 12149.458 [62] 1.49 �0.3 �9.45
3m1 + 2m3 12524.637 [63] 0.47 �1.6 �15.14
2m1 + 3m3 12525.214 [63] �1.05 �1.6 �14.80
6m1 14284.705 [64] 0.72 6.0 �15.82
5m1 + m3 14284.705 [64] 0.68 6.0 �15.82
5m1 + 2m2 14291.122 [64] 0.49 �20.2 �52.53
4m1 + 2m2 + m3 14291.122 [64] 0.49 �20.3 �52.53
7m1 16334.162 [65] �1.09 6.7 �11.23
6m1 + m3 16334.162 [65] �1.09 6.7 �11.23

6 In Ref. [49] the PES parameters have been determined on the basis of
experimental band centers of only one H2S isotopic species. Moreover, the breakdown
of the Born–Oppenheimer approximation was taken into account. As a consequence,
all values of the differences, D = mexp. � mcalc., in column 7 of Table 2 are smaller than in
our case.

7 As was mentioned above, in Ref. [52] the suggested method is applied to the
determination of the PES of more complicated five-atomic methane molecule.
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T1 ¼ �
X
i¼1;5

�h2

2lC�H

@2

@R2
i

� �h2

2lC�O

@2

@R2
2

�
X

j¼3;4;6

�h2

2
@2

@R2
j

: ð39Þ

In Eq. (39) indices 1 and 5 belong to the C–H stretches, index 2
belongs to the C–O stretch, indices 3 and 6, and 4 belong to in-
plane and out-of-plane deformations, respectively. All the values
here correspond to the values introduced in Section 2. The coordi-
nates R2, R3, and a combination R1 + R5 are totally symmetric (A1).
Coordinate R4 is of B1 symmetry and coordinate R6 and the combi-
nation R1 � R5 are transformed in accordance with the B2 irreduc-
ible representation of the C2v symmetry group. Taking into account
the symmetry properties, the potential function of the type of Eqs.
(17)–(21) can be easily constructed. For our testing calculations the
cubic part of the potential function is not suitable, and we present
here only its quadratic, quartic, and sextic parts:

V ¼ V0 þ V1ðy1; y5; y2Þ þ V2ðR3;R4;R6Þ
þ V3ðy1; y5; y2; R3;R4;R6Þ; ð40Þ

where

V0¼DH�C y2
1þy2

5

� �
þDC�Oy2

2þ
X

i

ð2pcxiÞ2

2
R2

i ; ð41Þ

V1ðy1;y5;y2Þ¼
1

24
a1111ðy4

1þy4
5Þþ

1
4
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1y2

5þ
1
6
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þ 1
24

a2222y4
2þ

1
6
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5Þy2þ
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2
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þ1
4
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5Þy2
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1
2
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2

1
6
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þ 1
48
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1
24
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2þ . . . ; ð42Þ

V2ðR3;R4;R6Þ¼
1

24

X
i¼3;4;6

aiiiiR
4
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1
4

X3;4;6
i;j>i
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2
i R2
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þ 1
48
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and

V3ðy1; y5; y2; R3;R4;R6Þ ¼
1

48

X
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5ÞR
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To realize the above derived method of the PES determination it
is necessary to have initial experimental data for the vibrational
band centers. In the present case we use 279 vibrational band cen-
ters from Ref. [69], most of which have been obtained from dis-
persed fluorescence spectra with an accuracy of 1.0–2.0 cm�1. In

Table 3
Band centers of the D2S molecule (in cm�1)a.

Band Value D, our D, [29] D, [48]

1 2 3 4 5

m2 855.40416 0.34 �0.4 �0.02
m1 1896.43154 0.38 �0.5 0.58
m3 1910.18375 �0.23 0.3 0.05
3m2 2549.07336 0.29 �0.4 �0.33
m1 + m2 2742.66570 0.86 �0.2 0.33
m2 + m3 2754.45192 0.03 0.1 �0.26
2m2 + m3 3593.12888 0.23 �0.3 �0.72
2m1 3753.470 �0.63 �0.7 0.67
m1 + m3 3757.45948 �0.38 �0.1 0.85
2m3 3809.154 0.01 �0.4 0.36
m1 + 3m2 4417.95894 0.44 1.7 �0.56
3m2 + m3 4426.08293 0.58 0.9 �1.08
2m1 + m2 4589.226 0.56 �0.2 0.36
m1 + m2 + m3 4592.18104 �0.34 0.0 0.45
m2 + 2m3 4643.477 0.40 0.1 �0.08
m1 + 2m2 + m3 5421.3007 �0.53 0.9 �0.11
3m1 5560.15 0.11 �0.5 1.00
2m1 + m3 5560.74 �0.14 �0.4 1.14
m1 + 2m3 5647.13 �1.43 �1.9 1.64
3m3 5672.89 0.82 �0.9 0.15
3m1 + m2 6384.63 �0.47 �0.4 0.75
2m1 + m2 + m3 6384.99 �0.71 �0.3 0.87

a Experimental band centers from Ref. [66].

Table 4
Band centers of the HDS molecule (in cm�1)a.

Band Value D, our D, [48]

1 2 3 4

m2 1032.71556 0.19 0.06
m1 1902.85624 0.01 0.15
2m2 2056.96580 �0.36 0.10
m3 2621.45594 0.17 �0.33
m1 + m2 2924.97773 �0.14 0.10
3m2 3072.49232 �0.70 0.52
m2 + m3 3634.33224 0.73 �1.14
2m1 3756.32989 �0.28 0.31
m1 + 2m2 3938.63701 �0.60 0.03
m1 + m3 4522.65030 0.85 �0.55
2m2 + m3 4638.86437 �2.09 �1.78
2m1 + m2 4767.69431 �1.83 �0.59
2m3 5147.35539 0.13 �0.61
m1 + m2 + m3 5525.26664 2.16 �1.01
3m1 5560.54225 �0.87 0.59
m2 + 2m3 6139.73928 2.54 1.56
m1 + 2m3 7047.15309 0.83 �0.73
2m2 + 2m3 7123.89641 �1.29 �2.36
3m3 7577.84009 �0.04 �0.38
m2 + 3m3 8548.90007 0.94 �1.28

a Experimental band centers from Ref. [67].

Table 5
Potential parameters for the H2CO molecule.a

Parameter Value Parameter Value

1 2 1 2

aH�C/Å�1 1.964 (50) a3333/aJ �0.000030 (14)
aC�O/Å�1 1.985 (22) a3344/aJ 0.000026 (23)
DH�C/aJ 0.60496 (71) a3355/aJ �0.00503 (96)
DC�O/aJ 1.71507 (84) a3366/aJ �0.000490 (49)
x3/cm�1 1533.5 (49) a4444/aJ 0.00000 (38)
x4/cm�1 1178.3 (12) a4455/aJ �0.00312 (62)
x6/cm�1 1258.7 (40) a4466/aJ 0.000222 (53)
a1111/aJ 0.140 (37) a5555/aJ 0.141 (15)
a1122/aJ �0.442 (65) a5566/aJ 0.00057 (20)
a1133/aJ �0.00503 (53) a6666/aJ �0.000026 (12)
a1144/aJ �0.00306 (32) a333344/aJ 0.000002 (2)
a1155/aJ �0.1057 (86) a333366/aJ 0.000025 (11)
a2233/aJ �0.0126 (33) a334466/aJ �0.000131 (14)
a2244/aJ �0.01333 (82) a336666/aJ �0.000011 (10)
a2255/aJ �0.443 (78) a444444/aJ �0.000032 (10)
a2266/aJ 0.00710 (58) a444466/aJ �0.000012 (3)

re
C�H=Åb 1.1033

re
C�O=Åb 1.2096
ae/ deg.b 116.19

a Uncertainties in parentheses are one standard errors.
b Constrained to the value from Ref. [3].
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this case, for experimental band centers the maximum values of
the vibrational quantum numbers are vmax:

4 ¼ 10, vmax:
2 ¼ 6,

vmax:
3 ¼ 3, vmax:

6 ¼ 5, and vmax:
1 ¼ vmax:

2 ¼ 2.
The fit procedure with the above mentioned 279 experimental

band centers leads to the set of 35 parameters (they are presented
in Table 5) that reproduce the initial experimental data with a rms
deviation of 1.8 cm�1, which is comparable with the experimental
uncertainties.

7. Conclusion

As a summary of the discussion in the present contribution we
conclude that the very simple suggested Hamiltonian model, which
creates a good basis for the construction and subsequent diagonal-
ization of large matrices, allows us to considerably simplify the real-
ization of the procedure of determination of the PES in comparison
with more cumbersome standard methods. It gives results that are
not worse than those given by other methods for three- and four-
atomic molecules and opens the possibility for a successful solution
of analogous problems for molecules with a larger number of atoms.
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Appendix 1

For the XY2 (C2v) molecule (see, Fig. 1) the relationship between
the bond lengths, rN (N = 1, 3), and the interbond angles, a, on the
one hand, and the coordinates, Qk, on the other hand, have the
following form:

rN � r2�N ¼ f
X

b

r2b � rNb

� �2g1=2 ð45Þ

and

cos a ¼

P
b

r1br3b

r1r3
; ð46Þ

where rNb are the instantaneous Cartesian coordinates of the nuclei.
In this case, it is possible to obtain the following formulas for the
coefficients, CN

k , CN
kl, and CN

klm from Eq. (6):

CN
k ¼

1
re

X
b

re
Nb � re

2b

� �
m�1=2

N lNbk �m�1=2
2 l2bk

� �
; ð47Þ

CN
kl ¼

1
re

bN
kl � CN

k CN
l

� �
; ð48Þ

CN
klm ¼

1
r2

e
3CN

k CN
lCN

m � CN
k bN

lm � CN
lbN

km � CN
m bN

kl

� �
; ð49Þ

where

bN
kl ¼

X
b

m�1=2
N lNbk �m�1=2

2 l2bk

� �
m�1=2

N lNbl �m�1=2
2 l2bl

� �
: ð50Þ

Here, mN (N = 1, 3) is the mass of the nucleus, YN, m2 is the
mass of the nucleus, X, re is the equilibrium bond length, and
re

Nb and re
2b (b = x,y,z) are the equilibrium Cartesian coordinates

of the nuclei in the molecular fixed coordinate system. The
dimensions of the coefficients CN

... are: ½CN
k 
 = g�1/2, ½CN

kl
 = g�1

cm�1, and ½CN
klm
 = g�3/2 cm�2.

Analogously, for the coefficients, Ck, Ckl, and Cklm, one can ob-
tain from Eq. (7):

Ck ¼
1

sin ae

1
re

j13 C1
k þ C3

k

� �
� A13

k

n o
; ð51Þ

where we denote

j13 ¼ 1
r2

e

X
b

re
1b � re

2b

� �
re

3b � re
2b

� �
; ð52Þ

A13
k ¼

1
re

X
b

m�1=2
1 l1bk �m�1=2

2 l2bk

� �
re

3b � re
2b

� �n

þ m�1=2
3 l3bk �m�1=2

2 l2bk

� �
re

1b � re
2b

� �o
; ð53Þ

and ae is the value of the equilibrium interbond angle.
Higher order coefficients, Ckl and Cklm, have considerably more

complicated forms:

Ckl ¼ �
1

sin ae
P13

kl �
cos ae

sin3 ae

P13
k P13

l ð54Þ

and

Cklm ¼ �
1

sin ae
P13

klm �
cos ae

sin3 ae

P13
k P13

lm þ P13
l P13

km þ P13
m P13

kl

� �

� 1þ 2 cos2 ae

sin5 ae

P13
k P13

l P13
m ; ð55Þ

where

P13
k ¼

1
re

A13
k þ r2

e j13F13
k ; ð56Þ

P13
kl ¼

1
r2

e
b13

kl þ re A13
k F13

l þ A13
l F13

k

� �
þ r2

e j13F13
kl; ð57Þ

and

P13
klm ¼ b13

klF13
m þ b13

km F13
l þ b13

lmF13
k

� �
þ

re A13
k F13

lm þ A13
l F13

km þ A13
m F13

kl

� �
þ r2

e F13
klm; ð58Þ

with

b13
kl ¼

X
b

m�1=2
1 l1bk �m�1=2

2 l2bk

� �
m�1=2

3 l3bl �m�1=2
2 l2bl

� �n o
; ð59Þ

Table A1
Numerical values of the first and second order C-coefficients for the H2S molecule.

Parameter Value Parameter Value Parameter Value

C1
1=amu�1=2 0.714444 C1

11=amu�1Å
�1

0.000179 C3
23=amu�1Å

�1 �0.011663
C3

1=amu�1=2 0.714444 C3
11=amu�1Å

�1
0.000179 C1

33=amu�1Å
�1

0.000355
C1

3=amu�1=2 �0.715747 C1
12=amu�1Å

�1 �0.002619 C3
33=amu�1Å

�1
0.000355

C3
3=amu�1=2 0.715747 C3

12=amu�1Å
�1 �0.002619 C2

11=amu�1Å
�2 �0.007827

C1
2=amu�1=2 0.026651 C1

13=amu�1Å
�1 �0.000080 C2

12=amu�1Å
�2

0.572828
C3

2=amu�1=2 0.026651 C3
13=amu�1Å

�1
0.000080 C2

13=amu�1Å
�2

0.000000
C2

1=amu�1=2Å
�1

0.007318 C1
22=amu�1Å

�1
0.383436 C2

22=amu�1Å
�2

0.042748
C2

2=amu�1=2Å
�1 �1.071454 C3

22=amu�1Å
�1

0.383436 C2
23=amu�1Å

�2
0.000000

C2
3=amu�1=2Å

�1
0.000000 C1

23=amu�1Å
�1

0.011663 C2
33=amu�1Å

�2 �0.034921
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F13
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1
re

D1
k þ D3

k

� �
; ð60Þ
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1
re
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kl

� �
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kD3
l þ D1

lD3
k

� �
; ð61Þ
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1
re
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k D1
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� �
; ð62Þ

and, for N = 1, 3:

DN
k ¼ �

1
r2

e
CN

k ; ð63Þ

DN
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1
r2

e
CN

kl þ
2
r3

e
CN

k CN
l ; ð64Þ

DN
klm ¼ �

1
r2

e
CN

klm þ
2
r3

e
CN

k CN
lm þ CN

lCN
km þ CN

m CN
kl

� �
� 6

r4
e

CN
k CN

lCN
m : ð65Þ

The dimensions of coefficients C. . . are: [Ck] = g�1/2 cm�1, [Ckl] =
g�1 cm�2, and [Cklm] = g�3/2 cm�3.

The formulas we presented here, in spite of their difficulty, are
simple enough in applications. It is important to note that the pres-
ence of symmetry in a molecule leads to the presence of symmetry
in the C-coefficients as well. To illustrate this, Table A1 presents
numerical values of the first- and second-order C-coefficients for
the H2S molecule. The values of the equilibrium parameters, re

and ae, necessary for the present calculations were taken from
Ref. [29]. The transformation coefficients, lNbk, were obtained using
the parameters frr, frr0 , fra, and faa from Ref. [29]. The masses of nu-
clei H and S were taken from Ref. [39]. The symmetry of the C-coef-
ficients can be clearly seen.

Appendix 2

Here, for illustration, we present in analytical form the main
coefficients, f N

k ðN ¼ 1;2; k ¼ 1;3Þ (see Table A2), of Eq. (12). If
we take into account the general equations of Appendix 1, it is
possible to show that for these coefficients the following relations
are valid:

f 1
1 ¼ f 2

3 ¼ 1 ð66Þ

and

f 1
3 ¼ f 2

1

¼
cos ae sin c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2m
p

þ sin ae cos c
ffiffiffiffiffi
M
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2m sin2 ae

q
cos ae sin c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2m
p

þ sin ae cos c
ffiffiffiffiffi
M
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2m sin2 ae

q :

ð67Þ

All other coefficients in the general relations in Eq. (12) have
considerably more complicated forms.

It is important that the f 1
3 ¼ f 2

1 coefficients depend not only on
the nuclear masses, but also on the value of the equilibrium inter-
bond angle (ae in Eq. (67) is half of the equilibrium interbond an-
gle) and the ambiguity parameter, sinc. It is interesting to
remark that for near local mode molecules (which satisfy the con-
ditions, M�m, sin ae � 1=

ffiffiffi
2
p

, and sin c � 1=
ffiffiffi
2
p

) the numerator of
Eq. (61) is close to zero. In the general case, these conditions are
not valid; however, the presence of the ambiguity parameter, sinc,
in Eq. (67) allows one to minimize the values of the coefficients f 1

3

and f 2
1 .
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